Adsorption and Desorption Characteristics of Cd2+ and Pb2+ by Micro and Nano-sized Biogenic CaCO3

نویسندگان

  • Renlu Liu
  • Yong Guan
  • Liang Chen
  • Bin Lian
چکیده

The purpose of this study was to elucidate the characteristics and mechanisms of adsorption and desorption for heavy metals by micro and nano-sized biogenic CaCO3 induced by Bacillus subtilis, and the pH effect on adsorption was investigated. The results showed that the adsorption characteristics of Cd2+ and Pb2+ are well described by the Langmuir adsorption isothermal equation, and the maximum adsorption amounts for Cd2+ and Pb2+ were 94.340 and 416.667 mg/g, respectively. The maximum removal efficiencies were 97% for Cd2+, 100% for Pb2+, and the desorption rate was smaller than 3%. Further experiments revealed that the biogenic CaCO3 could maintain its high adsorption capability for heavy metals within wide pH ranges (3-8). The FTIR and XRD results showed that, after the biogenic CaCO3 adsorbed Cd2+ or Pb2+, it did not produce a new phase, which indicated that biogenic CaCO3 and heavy metal ions were governed by a physical adsorption process, and the high adsorptive capacity of biogenic CaCO3 for Cd2+ and Pb2+ were mainly attributed to its large total specific surface area. The findings could improve the state of knowledge about biogenic CaCO3 formation in the environment and its potential roles in the biogeochemical cycles of heavy metals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoporous Xerogel for Adsorption of Pb2+ and Cd2+

Classical xerogels are robust, inexpensive and nontoxic materials with low-ordered nanoporous structures. In water streams where the pH is higher than the Point of Zero Charge, the surface of classical xerogels such as tetraethoxy orthosilan (TEOS) xerogel is negatively charged. It was assumed that a xerogel can work as a strong adsorbent for metal ions without further modification. Therefore, ...

متن کامل

Functionalized Graphene Oxide/Polyacrylonitrile Nanofibrous Composite: Pb2+ and Cd2+ Cations Adsorption

In this research, graphene oxide (GO) was functionalized by tannic acid to produce GO-TA and fabricate a novel functionalized graphene oxide/ polyacrylonitrile (PAN) nanofibrous as an adsorbent in order to remove two hazardous heavy metals from aqueous solutions. The results showed that the composite adsorbent can properly adsorb Pb2+ and Cd2+ metal cations, due to having the numerous potential...

متن کامل

Investigation of Langmuir and Freundlich Adsorption Isotherm of Pb2+ Ions by Micro Powder of Cedar Leaf

ABSTRACTIn this work, the micro powder was the product of cedar leaf (MPCL) is used as a low-cost adsorbent for the removal of Pb2+ ions from aqueous solutions. Bath experiments were used to determine the best adsorption conditions The adsorption percentage of Pb2+ ions MPCL samples at different initial pH, contact time (tc), adsorbent dosage and temperature (T) were investigated. Effective rem...

متن کامل

Amino Functionalized Silica Coated Fe3O4 Magnetic Nanoparticles as a Novel Adsorbent for Removal of Pb2+ and Cd2+

The present study synthesizes a novel adsorbent by coating Fe3O4 magnetic nanoparticles with amino functionalized mesoporous silica. The FTIR spectrums indicate that silica has been successfully coated on the surface of Fe3O4 and 3-aminopropyl tri methoxysilane compound have been grafted to the surface of silica-coated Fe3O4. The XRD analysis shows the presence of magnetite phase with cubic spi...

متن کامل

Investigation of Mechanical Properties Prediction of Synthesized Nylon-66/Nano-Calcium Carbonate Composites

In this research, the influence of adding micro- and nano- sized calcium carbonate powders to nylon-66 was investigated. Mechanical properties of micro and nano- composites, including tensile strength, elongation, and Young’s modulus, before and after ageing, were determined and analyzed. For this purpose, micro- and nano-sized CaCO3 particles were used as fillers to prepare micro-composites (c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018